Band gap-tunable potassium doped graphitic carbon nitride with enhanced mineralization ability.
نویسندگان
چکیده
Band gap-tunable potassium doped graphitic carbon nitride with enhanced mineralization ability was prepared using dicyandiamide monomer and potassium hydrate as precursors. X-ray diffraction (XRD), N2 adsorption, UV-Vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS) were used to characterize the prepared catalysts. The CB and VB potentials of graphitic carbon nitride could be tuned from -1.09 and +1.56 eV to -0.31 and +2.21 eV by controlling the K concentration. Besides, the addition of potassium inhibited the crystal growth of graphitic carbon nitride, enhanced the surface area and increased the separation rate for photogenerated electrons and holes. The visible-light-driven Rhodamine B (RhB) photodegradation and mineralization performances were significantly improved after potassium doping. A possible influence mechanism of the potassium concentration on the photocatalytic performance was proposed.
منابع مشابه
Origin of photoactivity in graphitic carbon nitride and strategies for enhancement of photocatalytic efficiency: insights from first-principles computations.
The origin of the photoactivity in graphitic carbon nitride (g-C3N4) and the strategies for improving its photocatalytic efficiency were systematically investigated using first-principles computations. We found that g-C3N4 composed of tri-s-triazine units (g-CN1) is preferable in photocatalysis, owing to its visible-light absorption and appropriate band edge potentials. Despite the benefit of n...
متن کاملGraphitic Carbon Nitride/Reduced Graphene Oxide/Silver Oxide Nanostructures with Enhanced Photocatalytic Activity in Visible Light
Visible light active graphitic carbon nitride/reduced graphene oxide/silver oxide nanocomposites with a p-n heterojunction structure were synthesized by chemical deposition methods. Prepared samples were characterized by different physico-chemical technics such as XRD, FTIR, SEM, TEM and DRS. Photocatalytic activity investigated by analyzing the Acid blue 92 (AB92) concentration during the time...
متن کاملPhosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation.
As a new kind of polymeric semiconductors, graphitic carbon nitride (g-C(3)N(4)) and its incompletely condensed precursors are stable up to 550 degrees C in air and have shown promising photovoltaic applications. However, for practical applications, their efficiency, limited e.g. by band gap absorption, needs further improvement. Here we report a "structural doping" strategy, in which phosphoru...
متن کاملBiomolecule-assisted synthesis of carbon nitride and sulfur-doped carbon nitride heterojunction nanosheets: An efficient heterojunction photocatalyst for photoelectrochemical applications
A biomolecule-assisted pyrolysis method has been developed to synthesize sulfur-doped graphitic carbon nitride (CNS) nanosheets. During the synthesis, sulfur could be introduced as a dopant into the lattice of carbon nitride (CN). Sulfur doping changed the texture as well as relative band positions of CN. By growing CN on preformed sulfur-doped CN nanosheets, composite CN/CNS heterojunction nan...
متن کاملWork Function Characterization of Potassium-Intercalated, Boron Nitride Doped Graphitic Petals
This paper reports on characterization techniques for electron emission from potassiumintercalated boron nitride-modified graphitic petals (GPs). Carbon-based materials offer potentially good performance in electron emission applications owing to high thermal stability and a wide range of nanostructures that increase emission current via field enhancement. Furthermore, potassium adsorption and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Dalton transactions
دوره 44 3 شماره
صفحات -
تاریخ انتشار 2015